- преобразование Римана
- n
aerodyn. Riemannscher Abbildungssatz
Универсальный русско-немецкий словарь. Академик.ру. 2011.
Универсальный русско-немецкий словарь. Академик.ру. 2011.
Преобразование Мёбиуса — Вид преобразований на комплексной плоскости (серая) и сфере Римана (чёрная) Не следует путать с обращением Мёбиуса. Преобразование Мёбиуса дробно линейная функция одного комплексного переменного, тождественно не равная константе … Википедия
Преобразование Кэли — Вид преобразований на комплексной плоскости (серая) и сфере Римана (чёрная) Содержание 1 Определение 2 Алгебраические свойства … Википедия
Преобразование Мебиуса — Вид преобразований на комплексной плоскости (серая) и сфере Римана (чёрная) Содержание 1 Определение 2 Алгебраические свойства … Википедия
МОНОДРОМИИ ПРЕОБРАЗОВАНИЕ — преобразование слоев (или их гомотопич. инвариантов) расслоенного пространства, соответствующее нек рому пути в базе. Более точно, пусть локально тривиальное расслоение и пусть путь в Вс началом в точке и концом в . Тривиализация расслоения… … Математическая энциклопедия
Дробно-линейное преобразование — Вид преобразований на комплексной плоскости (серая) и сфере Римана (чёрная) Содержание 1 Определение 2 Алгебраические свойства … Википедия
Дифференциальное уравнение Римана — Дифференциальное уравнение Римана обобщение гипергеометрического уравнения, позволяющее получить регулярные сингулярные точки (англ.)русск. в любой точке сферы Римана. Названо в честь математика Бернхарда Римана. Содержание … Википедия
Дифферинтеграл Римана-Лиувилля — В математике, дифферинтеграл Римана Лиувилля отображает вещественную функцию ƒ : R → R в другую функцию Iαƒ того же типа для каждого значения параметра α > 0. Данный дифферинтеграл является обобщением повторной… … Википедия
Дифферинтеграл Римана — В математике, дифферинтеграл Римана Лиувилля отображает вещественную функцию в другую функцию того же типа для каждого значения параметра . Данный дифферинтеграл является обобщением повторной первообразной от в том смысле, что для целых… … Википедия
ЭЙЛЕРА ПРЕОБРАЗОВАНИЕ — 1) Э. п. рядов: если дан числовой ряд то ряд наа. рядом, полученным из ряда (1) Э. п. рядов. Здесь Если ряд (1) сходится, то сходится и ряд (2) и притом к той же сумме, что и ряд (1). Если ряд (2) сходится (в этом случае ряд (1) может… … Математическая энциклопедия
ХАРАКТЕРИСТИЧЕСКАЯ ФУНКЦИЯ — преобразование Фурье Стилтьеса вероятностной меры комплскснозначная функция, заданная на всей числовой оси формулой X. ф. случайной величины Xпо определению есть X. ф. ее вероятностного распределения Метод, связанный с использованием X. ф., был… … Математическая энциклопедия
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ — уравнение вида где F заданная действительная функция точки х=(xt, ..., х п )области Dевклидова пространства Е п, и действительных переменных (и(х) неизвестная функция) с неотрицательными целочисленными индексами i1 ,..., in, k=0, ..., т, по… … Математическая энциклопедия